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SUMMARY

The finite element integration of non-equilibrium contaminant transport in porous media yields sparse,
unsymmetric, real or complex equations, which may be solved by iterative projection methods, such as
Bi-CGSTAB and TFQMR, on condition that they are effectively preconditioned. To ensure a fast
convergence, the eigenspectrum of the preconditioned equations has to be very compact around unity.
Compactness is generally measured by the spectral condition number. In difficult advection-dominated
problems, however, the condition number may be large and nevertheless, convergence may be good. A
numerical study of the preconditioned eigenspectrum of a representative test case is performed using the
incomplete triangular factorization. The results show that preconditioning eliminates most of the original
complex eigenvalues, and that compactness is not necessarily jeopardized by a large condition number.
Quite surprisingly, it is shown that the preconditioned complex problem may have a more compact real
eigenspectrum than the equivalent real problem. Copyright © 1999 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Recently, new finite element models have been developed to solve the problem of non-equi-
librium or non-ideal reactive transport in sorbing porous media [1–6]. These models may
account for chemical diffusion, mechanical dispersion, advection, decay, instantaneous and
rate-limited sorption onto the solid phase, and differ from each other for the numerical
approach of the solution. The resulting algebraic equations involve large sparse matrices that
are generally unsymmetric and may be either real or complex [7,8]. Solution is obtained with
the aid of iterative projection (or conjugate gradient-like) methods, effectively preconditioned
[9]. In particular, the present study focuses on the two solvers known as Bi-CGSTAB [10] and
TFQMR [11].

The asymptotic convergence rate of these solvers is of the greatest importance for an
efficient and robust use of the related models in both field and parametric analyses. Conver-
gence depends on a large number of factors, including the physico-chemical properties of fluid,
soil and contaminant, on the type of elements and structure of the mesh, and can hardly be
described by a few theoretical numbers. It is generally recognized, however, that precondition-
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ing is essential to ensure convergence, and that a good preconditioner should compact the
eigenspectrum around unity, while requiring a limited computational effort so as to main-
tain the iterative solver competitive with other alternative solution techniques.

A rough relatively inexpensive measure of the eigenspectrum compactness is provided by
the spectral condition number. In difficult convection-dominated problems, where the skew
symmetric component is important, the condition number may not be indicative of the
spectrum compactness, and hence may not give helpful information on the rate of conver-
gence of the projection solver.

The present paper describes some interesting numerical findings concerned with the distri-
bution of the real and complex eigenvalues before and after preconditioning in a medium–
large finite element sample problem of non-equilibrium transport in a partially saturated
porous system. Three solution approaches, referred to as coupled, decoupled and FELT
(Finite Element Laplace Transform) [7], are considered and discussed. The influence of high
Peclet and Courant numbers is also examined. The real, as well as the complex FELT
equations are preconditioned by the incomplete triangular factors with no fill-in (ILU(0)
[12,13]) and partial controlled fill-in (ILUT [14]), as there is much literature, e.g. [15],
showing that the preconditioners belonging to the class of incomplete factorization are
quite robust preconditioners for a large set of numerical problems. The full eigenspectrum
of the native equations is computed and compared with that after preconditioning. The
frequency of the complex eigenvalues in both the original and the preconditioned matrix
is obtained, and is shown to be highly influenced by the strength of the advective com-
ponent. Preconditioning may significantly reduce the number of complex eigenvalues but
does not eliminate them all. Surprisingly enough, the fully complex FELT equations turned
out to possess an almost entirely real eigenspectrum after preconditioning, thus provid-
ing indirect evidence of the excellent performance of the projection solvers in the complex
field.

The paper is organized as follows. First a brief review of solution methods to the
non-equilibrium transport model is provided. Then the numerical example is introduced and
the eigenspectrums of the native and preconditioned matrices are computed, compared and
discussed. A few representative convergence profiles are also shown. Finally, a set of
concluding remarks are issued.

2. REVIEW OF NUMERICAL SOLUTION APPROACHES FOR THE
NON-EQUILIBRIUM TRANSPORT MODEL

The conceptualization of van Genuchten and Wierenga [16] is used for the first-order
kinetics representation of the dual-porosity model. This model describes non-equilibrium
contaminant transport in a variably saturated, aggregated porous medium, where the satu-
rated pore space is subdivided into a mobile water region and an immobile water region.
Fluid flow and convective and dispersive solute transport occur in the mobile region only,
and the exchange of solute between the mobile and immobile regions is controlled by a
diffusive mechanism. The model is further enhanced by introducing linear equilibrium sorp-
tion and a biodegradation or radioactive decay term in both the mobile and immobile
regions. Under these assumptions, the general equations describing the linear dual-porosity
model in a two-dimensional system are [2]:
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where xi is the ith co-ordinate direction; t is time; cm and cim are the concentrations of the
dissolved constituent in the mobile and immobile water regions respectively; the dispersion
coefficient is Dij=aT�6 �dij+ (aL−aT)6i6j/�6 �+nmSwm

D0tdij ; aL and aT are the longitudinal
and transverse dispersivities respectively; 6i is the Darcy velocity; �6 �=
61

2+62
2; dij is the

Kronecker delta; D0 is the molecular diffusion coefficient; t is the tortuosity; nm and nim are
the porosities of the mobile and immobile regions; Swm

is the water saturation in the mobile
region; Tm=nmSwm

+rsFkd m
and Tim=nim+rs(1−F)kd im

are retardation factors for the
mobile and immobile zones; rs= (1−nm−nim)gs is the bulk soil density; gs is the density of
the solid grains; F is the fraction of sorption sites in direct contact with the mobile water;
kd m

and kd im
are the distribution coefficients in the linear Freundlich isotherm describing

instantaneous sorption in the mobile and immobile regions; l is the linear decay constant; q
represents distributed source/sink terms; f is the distributed flow rate of the solute per unit
volume; c* is the concentration of the injected/withdrawn fluid; and a is the mass transfer
coefficient for the diffusion process between the mobile and immobile water regions.
Parameter a provides an indication of how close to equilibrium the system is. As a��,
the mass exchange between the mobile and the immobile regions becomes instantaneous,
and the transport model reduces to the classical convection–dispersion–reaction equation
with the coefficient multiplying (cm/(t equal to Tm+Tim. Likewise, if a�0, (cim/(t=
−lcim, implying that cim=0 everywhere (for initial condition cim=0), and hence, the con-
vection–dispersion–reaction equation holds true again with Tm+Tim replaced by Tm [1].
The velocity field represented by vector 7 and the saturation values represented by Swm

can
be obtained by solving the flow equation in variably saturated porous media for the mobile
region [4].

Using (1b), (1a) can be written as
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Equations (2) and (1b) are both explicitly used in the coupled approach to the solution of
the dual-porosity model.

Integrating Equation (1b) analytically, assuming cim(xi, t=0)=0, and substituting the
result into (1a) leads to an integro-differential equation for the mobile region concentration
[2]:
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where b=a/Tim. Equation (3) forms the basis for the integro–differential approach to the
solution of the dual-porosity model.
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2.1. Coupled approach

Equations (2) and (1b) are integrated by linear triangular finite elements in space and finite
differences in time using the Galerkin formulation and a weighted time stepping scheme [7].
Denoting cm and cim as the vectors containing the unknown mobile and immobile concentra-
tions at each of the N nodes of the finite element mesh, the following algebraic system is
obtained:�

n1(S+B+E0 +F0 )k+n1+
1

Dtk G0 k+n1
n

cm
k+1−n1Rc im

k+1

=
� 1
Dtk G0 k+n1−n11(S+B+E0 +F0 )k+n1

n
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k +n11Rc im
k −r* ,k+n1, (4a)

� 1
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n
c im
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k+1=

� 1
Dtk G*−n22R*

n
c im

k +n22Rcm
k , (4b)

where n1 and n2 (0Bn1, n251) are weighting factors; n11=1−n1; n22=1−n2; k indicates the
time level; S, B, and G0 are the stiffness, advection and capacitance matrices respectively; E0 , F0 ,
R and R* are capacitance-type matrices arising from the cm and cim terms on the right-hand-
side of Equations (2) and (1b), and from the convective component of the Cauchy boundary
conditions; G* is the capacitance matrix for Equation (1b); and r* contains source/sink terms,
Neumann boundary conditions, and the total solute flux across the Cauchy boundary.
Equations (4a) and (4b) represent a non-symmetric system of 2N coupled equations for the
nodal mobile and immobile region concentrations.

2.2. Decoupled approach

Following Leismann et al. [17], a weighted time difference approximation was firstly applied
to the coupled Equations (2) and (1b). Obtained for (1b) was [1]:

c im
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Timc im
k +aDtk[n2cm
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k ]−Dtk(a+lTim)n22c im

k

n2Dtk(a+lTim)+Tim

, (5)

which is substituted for c im
k+1 in the discretized form of (2). Integrating the equation in space

by the Galerkin method gives a decoupled system in the N unknown mobile region concentra-
tions cm

k+1:�
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1
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n
cm
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where E* and E** are capacitance-type matrices involving the terms n1a
2Dtk/d and a [Tim+

Dtk(a+lTim)(n2−n1)]/d respectively, where d=n2Dtk(a+lTim)+Tim.

2.3. FELT approach

Provided that the non-equilibrium transport model is used in its simplified linear form, the
FELT approach can be used for the discretization of Equation (3) [18].

Using this technique, Equation (3) is first transformed into the Laplace domain. To this aim,
let L be the Laplace transformation operator, defined as:
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L[cm(t)]= c̄m(p)=
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where p is the Laplace transform parameter (p�C). Recall that the first fundamental property
of the Laplace transformation is:
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Boundary conditions to (7) are also properly transformed into the Laplace domain:

c̄m(xi, p)= c̄1(xi, p)
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Equation (7) together with the transformed boundary conditions represent a PDE in the
Laplace domain, where time has been removed. The solution of this equation gives the
concentration values in the p space, or Laplace domain.

The FELT technique proceeds by solving, via the finite element scheme, Equation (7) for an
appropriate number of p values. A set of solution vectors in the so-called p space is thus
obtained. These vectors have to be transformed back into the time domain to provide the final
mobile region concentration as a function of time.

In this paper, the numerical discretization of (7) for each value of p is obtained using a
Galerkin approach with triangular elements and linear basis functions. The transformed
concentration c̄m is approximated by:

c̄m: ĉ= %
N

j=1

c̄jWj(x1, x2), (8)
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Figure 1. Pressure head (m) and velocity field (m day−1) [9].

where c̄= (c̄1, . . . , c̄N)T is the complex-valued vector of nodal concentrations in the trans-
formed p space. Substituting (8) into (7), imposing the orthogonality condition between the
residual and the test functions Wj, and applying Green’s lemma to the dispersive terms only
[19], leads to the final set of N×N algebraic equations [1]:

[S+B+E+F]c̄+d=0. (9)

The real matrices S, B and E are the standard finite element matrices discretizing the
dispersive, advective and Cauchy boundary condition components of Equation (7). Matrix F
is a complex-valued capacitance-type matrix arising from the discretizations of the terms
involving the Laplace parameter p. Finally, the complex-valued vector d implements the
transformed boundary conditions together with the source and sink terms. The system
(Equation (9)) is a set of linear algebraic equations in the complex space, and is a function of
the Laplace parameter p. The solution to (9) provides the concentration in the Laplace
domain. Anti-transformation of c̄ from the Laplace domain to the time domain gives the
solution of Equation (3) as a function of time.

The numerical anti-transformation of c̄ is obtained by means of the epsilon algorithm [20],
with the help of the refinement technique proposed in [21]. By the epsilon algorithm, a discrete
set of values of the Laplace parameter p is chosen:

Table I. Description of parameters of test case considered

Case Dt (day) aL (m)Approach Pe Cr a (day−1)

0.03 5 2.5Decoupled 1 1a1
0.25500.751010Decoupleda2

5b1 2.5Coupled 1 1 0.03
b2 Coupled 10 10 0.75 50 0.25
c1 2.50.0311 5FELT

0.751010FELTc2 50 0.25

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 29: 343–361 (1999)
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Figure 2. (a) Histogram of the absolute eigenvalue distribution of the coefficient matrix A for problem a1, the size of
the classes is 0.1; (b) the same as (a) for problem a2; (c) histogram of the ratio between the imaginary and the real
part of the eigenvalues of the coefficient matrix A for problem a1, the size of the classes is 0.005; (d) the same as (c)

for problem a2 with the size of the classes equal to 0.05.

p=pk=p0+ ikp/T, k=0, 1, 2, . . . , 2M+1, (10)

where p0= − ln(e)/(1.6tmax), e being the absolute error term and tmax the maximum simulation
time, and T=0.8tmax. With the choice of p as in (10), the system (Equation (9)) has to be
solved for r=2(M+1) values of the discrete Laplace parameter pk.

The anti-transformed concentration cj,k at node j for p=pk is approximated by:

cj(t):
ep0t

T
!1

2
c̄j,0+ %

2M+1

k=1

�
Re(c̄j,k) cos

�kpt
T
�

−Im(c̄j,k) sin
�kpt

T
�n"

. (11)

Denoting the inverse Laplace transformation by L−1, the approximate concentration in the
time domain can then be written as:

ĉ(x1, x2, t)= %
N

j=1

L−1[c̄j(pk)]Wj(x1, x2)= %
N

j=1

cj(t)Wj(x1, x2), (12)

where the real-valued vector c(t)= (c1(t), . . . , cN(t))T is the vector of nodal mobile concentra-
tions at time t.

The value of M has to be set large enough to guarantee convergence of the series on the
right-hand-side of Equation (11) to the correct concentration cj(t). In practice, M is chosen in
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the range 5–40, since round-off errors may become dominant for larger M [21]. The value of
M is also influenced by the presence of steep gradients in the solution (e.g. advective
transport). The parameter tmax has to be chosen based on the simulation time. The computa-
tion of the solution at small times relative to tmax (t� tmax), requires, in principle, a large value
of M, but this may trigger round-off errors in the inversion algorithm. In these cases it may
be necessary to solve the transport problem for a few tmax values, which together, cover the
prescribed maximum simulation time.

3. PROJECTION METHODS FOR THE SOLUTION TO FINITE ELEMENT
EQUATIONS

Now write the final set of algebraic finite element equations in the general form

Ac=b, (13)

where A, the coefficient matrix of Equations (4), (6) and (9), is sparse, non-symmetric, real or
complex. Let N be the size of A, keeping in mind that in the coupled approach, the system is

Figure 3. (a) Histogram of the absolute eigenvalue distribution of the preconditioned matrix L−1AU−1 (ILU(0)) for
problem a1, the size of the classes is 0.01; (b) the same as (a) for problem a2 with the size of the classes equal to 0.1;
(c) histogram of the ratio between the imaginary and the real part of the eigenvalues of the preconditioned matrix
L−1AU−1 (ILU(0)) for problem a1, the size of the classes is 0.125 · 10−3; (d) the same as (c) for problem a2 with the

size of the classes equal to 0.01.

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 29: 343–361 (1999)
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Figure 4. (a) Histogram of the absolute eigenvalue distribution of the preconditioned matrix L−1AU−1 (ILUT) for
problem a2, the size of the classes is 0.01; (b) histogram of the ratio between the imaginary and the real part of the

eigenvalues of the preconditioned matrix L−1AU−1 (ILUT) for problem a2, the size of the classes is 0.01.

twice as large as in the decoupled and FELT approaches. In recent years, projection (or
conjugate gradient-like) solution methods have been widely and successfully used. These
methods project Ac=b onto subspaces (called Krylov subspaces) of increasing size l, and
solve the projected system. This procedure has the remarkable property of terminating at the
desired solution after a finite number of iterations in exact arithmetic, and in this respect, a
projection method can be regarded as a direct approach. In practice, convergence long before
the dimension of the subspace reaches its maximum possible value (N) is sought. On the other
hand, round-off errors can prevent convergence to the desired solution within a finite number
of iterations, so that in effect, projection methods are regarded as iterative methods. For a
thorough review of projection methods see [13]. Bi-CGSTAB [10] and TFQMR [11] prove to
be quite robust and efficient conjugate gradient-like methods for the transport problems
addressed by the present study [9]. They are both variants of the BCG (biconjugate gradient)
method [22,23], with the aim to avoid the explicit multiplication between AT and a vector
(while preserving the theoretical properties of BCG), and to smooth the erratic residual
behavior of the CGS (conjugate gradient squared) method, the earliest BCG variant that did
not require the direct use of the transpose of A [24].

The projection methods used in this paper do not require the use of optimal acceleration
parameters. However, in practical problems of realistically large size, it is crucial to combine
Krylov subspace algorithms with an effective preconditioning technique, which can prove to be
the key factor for the success of any CG-like scheme.

The basic idea of preconditioning is as follows. Let A1A2 be a given non-singular N×N
matrix, which in some measure approximates the coefficient matrix A of the discrete finite
element system. This system is replaced by the equivalent system

A1
−1AA2

−1A2c=A1
−1b, (14)

which can be written as

A%c %=b %, (15)

where A%=A1
−1AA2

−1, c %=A2c and b %=A1
−1b. System (15) is now solved by Bi-CGSTAB or

TFQMR in place of Equation (13), with c recovered as c=A2
−1c %.

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 29: 343–361 (1999)
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One of the most popular and cost-effective preconditioners is derived from the class of the
incomplete triangular factorizations of A. Here, set Al=L and A2=U, where L and U are
lower and upper triangular matrices, and a form is obtained which resembles that of the true
triangular factors of A.

In the so-called incomplete Crout factorization, referred to herein as ILU, L and U are
obtained by performing the standard LU decomposition of A and dropping all fill-in elements,
which are generated during the process [12,13]. This is the most inexpensive incomplete
factorization possible. Depending on the actual structure of A, however, the matrix (LU)−1

can be a poor approximation of A−1, resulting in poor acceleration of the native projection
method. Hence, ILUT [14] can be used instead. The ILUT fill-in process is properly controlled
by two parameters, t % and e %, related to the retention number of newly generated elements and
their relative magnitude.

Note that in the FELT approach, matrix A is a function of pk, which implies the
construction of a different preconditioner for each pk value.

4. COMPUTATION OF REAL AND COMPLEX EIGENVALUES

For the eigenvalues of the equations derived in Section 3, the QR method [25] is used. It allows
for the computation of all the real and complex eigenvalues of arbitrary unsymmetric matrices.
More specifically, use has been made of routine DGEEV of LAPACK [26] for real matrices
and CGEEV for complex-valued matrices. For a more detailed analysis of the methods
implemented in the LAPACK package, see [27,28]. It has been possible to calculate all the
eigenvalues in the largest (N=4610) problem as well for both the native matrix A and the
preconditioned matrix L−1AU− l on the Risc 600/390 with 288 RAM Mbyte. For larger

Table II. Effective eigenspectrum, outliers, effective spectral condition number Cn (excluding the
outliers), number Nc of significant complex eigenvalues with �y �/�x �]d

Effective eigenspectrum Outliers Cn Nc NcCase Preconditioner
(d=0.01) (d=0.05)

a1 None [0.83608E+0; 0.12198E+2] 14.59 1874 1366
ILU(0)a1 [0.93839E+0; 0.10560E+1] 1.13 8 0

001.00a1 [0.99970E+0; 0.10004E+1]ILUT

None [0.94429E−2; 0.93827E+1] 993.62 2016a2 1677
a2 ILU(0) [0.45309E−1; 0.49204E+1] 7432.2 108.60 1620 206
a2 ILUT [0.51935E−1; 0.20783E+1] 56.419 40.02 166 60

1934353846.04[0.43775E+0; 0.20154E+2]Noneb1
18141.39 40[0.82917E+0; 0.11490E+1]ILU(0)b1

b1 ILUT [0.97975E+0; 0.10239E+1] 1.05 1152 0

[0.28156E−2; 0.18787E+2] 6672.47 2136 2054b2 None
3660b2 23.618, 55.498,ILU(0) 147.83 1724[0.16885E−1; 0.24962E+1]

4344.6
5.1128 8.54 3000ILUT 1008[0.28323E+0; 0.24204E+1]b2

None [0.96151E+2; 0.36214E+3] 3.76 2209 2209c1
ILU(0) [0.92843E+0; 0.10632E+1]c1 1.14 673 0

None [0.89129E+1; 0.38500E+2] 4.32 2209c2 2209
08941.18[0.91311E+0; 0.10792E+1]c2 ILU(0)

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 29: 343–361 (1999)
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Figure 5. (a) Histogram of the absolute eigenvalue distribution of the coefficient matrix A for problem b1, the size of
the classes is 0.2; (b) the same as (a) for problem b2; (c) histogram of the ratio between the imaginary and the real
part of the eigenvalues of the coefficient matrix A for problem b1, the size of the classes is 0.01; (d) the same as (c)

for problem b2 with the size of the classes equal to 0.05.

dimensions one could resort to the method known as ‘subspace iteration’ [29,30], which is
suited for the assessment of the m (m�N) eigenvalues with the largest absolute module. The
subspace iteration is a block generalization of the power method and is used in structural
engineering [31]. Both techniques have been used for a cross-verification of the computed
eigenspectrums.

5. DESCRIPTION OF TEST CASE

The test problem is a 240×240 m domain, uniformly discretized into 4608 triangles and 2401
nodes (Dx=Dz=5 m). The steady state velocity and saturation values are obtained by solving
the flow problem as mentioned earlier. For the flow problem, the domain is heterogeneous,
with a horizontal slab of length 150 m and thickness 5 m starting at x=0, z=165 m. The slab
has a saturated hydraulic conductivity 1000 times smaller than the rest of the domain. (The
resulting steady state pressure head contours and velocity field are shown in Figure 1). The
maximum velocity resulting from the flow problem is 1.09 m day−1.

The transport problem is homogeneous, with D0=c*= f=kd m
=l=0, t=1.0, nm=0.30,

nim=0.14, gs=2700 kg m−3, F=0.4, and kd im
=0.5 m3 kg−1. Dirichlet conditions of
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cm=1 kg m−3 are imposed along the x=0 and z=0 boundaries, while cm=0 is imposed
along x=240 and z=240. The initial condition is cm=cim=0. The interest lies in seeing the
effects of the mass transfer rate and of the Peclet (Pe) and Courant (Cr) numbers on the
projection methods, where for this test problem Pe=Dx/(2aL) and Cr=6maxDt/Dx:Dt/Dx,
so the model parameters that are varied are a, aL (=aT) and Dt. The values of Pe, Cr and a

used in the present numerical study are provided in Table I. The final problem size is N=2209
(N=4610 for the coupled example) to account for the equations that have been dropped on
the Dirichlet boundary nodes. The non-zero coefficients of the corresponding finite element
matrices are 15089 and 62432 respectively.

6. NUMERICAL RESULTS

In this section, the distribution of the eigenvalues z=x+ iy of the original matrix A and the
preconditioned one L−1AU−1 are shown and commented on. Some representative conver-
gence profiles are also given for the three solution approaches. Two types of representations
are used, i.e. the frequency distribution of the absolute values �z �=
x2+y2 and the ratios
�y �/�x � of the imaginary and real part of z. For the case of incomplete factorization with a

Figure 6. (a) Histogram of the absolute eigenvalue distribution of the preconditioned matrix L−1AU−1 (ILU(0)) for
problem b1, the size of the classes is 0.005; (b) the same as (a) for problem b2 with the size of the classes equal to 0.04;
(c) histogram of the ratio between the imaginary and the real part of the eigenvalues of the preconditioned matrix
L−1AU−1 (ILU(0)) for problem b1, the size of the classes is 0.002; (d) the same as (c) for problem b2 with the size

of the classes equal to 0.01.
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Figure 7. (a) Histogram of the absolute eigenvalue distribution of the preconditioned matrix L−1AU−1 (ILUT) for
problem b1, the size of the classes is 0.005; (b) the same as (a) for problem b2 with the size of the classes equal to 0.02;
(c) histogram of the ratio between the imaginary and the real part of the eigenvalues of the preconditioned matrix
L−1AU−1 (ILUT) for problem b1, the size of the classes is 0.001; (d) the same as (c) for problem b2 with the size

of the classes equal to 0.01.

controlled fill-in obtained with ILUT preconditioning, the parameters t %=5, e %=10−9 have
been assumed; for an explanation of this selection see [9]. For a correct interpretation of the
following histograms, it must be kept in mind that the size of the histogram interval containing
zero on the horizontal axis is half that of the subsequent classes.

With reference to Table I, Figure 2 shows the A eigenvalue distribution for problems a1 and
a2, while the same results for the equations preconditioned with ILU(0) and ILUT are given
in Figures 3 and 4 respectively. Note that in Figure 4, the results for the problem a1 are
missing as ILUT compacts all the eigenvalues into only one class around unity. Inspection of
the previous figures (see also Table II) shows that the interval that contains the eigenvalues
increases for both A and L−1AU−1 when Pe and Cr increase, irrespective of preconditioning
(ILU(0) or ILUT), and that the frequency of complex eigenvalues follows the same pattern. As
is expected, ILUT provides a more compact eigenspectrum than ILU(0). Table II supplies the
upper and lower bounds of the effective eigenspectrum with the outliers given separately, a
measure Cn=max�z �/min�z � of the effective condition number excluding the outliers, and the
number Nc of representative complex characteristic values. Nc is formed by counting the
eigenvalues for which �y �/�x �\d, with d=10−2 and 5·10−2. Note that for problem a2 with
high Pe and Cr, preconditioning produces an outlier, namely an eigenvalue falling outside the
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effective eigenspectrum, which actually controls the solver asymptotic rate of convergence.
Hence, for problem a2, which is convection-dominated, the estimate of the condition number
formed with the true minimal and maximal eigenvalues of the preconditioned matrix is not
indicative of the performance of Bi-CGSTAB and TFQMR. Actually, it may be observed that
the estimated true condition number of L−1AU−1 is even higher than that of the unprecondi-
tioned matrix A, for which both Bi-CGSTAB and TFQMR would converge much slower or
would even fail to converge. Also, note in Table II the large number of complex eigenvalues
in A, which is drastically reduced by preconditioning in problem a1, but much less in problem
a2. The effective condition number Cn is still significantly larger than 1 in the more difficult
problem a2, while it is very close to 1 for problem a1. The generation of outliers may be
related to instability effects introduced by the incomplete triangular decomposition [32].

Figures 5–7 show results for problems b1 and b2 that are similar to those given in Figures
2–4; see also Table II. While a comparison of problems b1 and b2 leads to comments similar
to the ones made before, a comparison of problems a and b indicates that the decoupled
approach of solution (a) is better conditioned than the coupled one (b) with a lower frequency
of complex eigenvalues. This also holds after preconditioning and suggests that coupling gives
rise to a numerical problem that is more difficult to solve by Bi-CGSTAB and TFQMR, not
to mention the number of equations, which is twice as big.

Figure 8. (a) Histogram of the absolute eigenvalue distribution of the coefficient matrix A for problem c1, the size of
the classes is 5; (b) the same as (a) for problem c2 with the size of the classes equal to 0.5; (c) histogram of the ratio
between the imaginary and the real part of the eigenvalues of the coefficient matrix A for problem c1, the size of the

classes is 0.1; (d) the same as (c) for problem c2.
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Figure 9. (a) Histogram of the absolute eigenvalue distribution of the preconditioned matrix L−1AU−1 (ILU(0)) for
problem c1, the size of the classes is 0.0025; (b) the same as (a) for problem c2; (c) histogram of the ratio between the
imaginary and the real part of the eigenvalues of the preconditioned matrix L−1AU−1 (ILU(0)) for problem c1, the

size of the classes is 0.5·10−3; (d) the same as (c) for problem c2.

Finally, the results from the FELT approach are provided in Figures 8 and 9 and in Table
II. They have been obtained using a Laplace parameter pk with k=63 (M=31), i.e. with the
largest imaginary part, e=10−15 and tmax=50 day. Note that the complex A condition
number is much smaller than is for real A, and preconditioning with ILUT is not reported
since the ILUT preconditioned eigenspectrum is very compact around unity. Also, note the
absence of outliers in problem c2 and the complete elimination from L−1AU−1 of eigenvalues
with an imaginary part 5% larger than the real part. The histograms of Figures 8 and 9 are
more uniform than the equivalent histograms of Figures 2–7. The eigenanalysis show
therefore, that Bi-CGSTAB and TFQMR are very well-suited to solve the FELT equations,
consistent with the results obtained by Gambolati and Pini [33] in their convergence study of
complex projection solvers.

As far as the convergence of Bi-CGSTAB and TFQMR is concerned, some representative
profiles in terms of relative residual 
rr
 are given in Figures 10–12 for test case a2, b2 and c2
respectively, i.e. the most difficult problems from a numerical viewpoint. Note in Figures 10
and 11, the erratic behavior of Bi-CGSTAB and the slow convergence of TFQMR with the
ILU(0) preconditioner. Using ILUT greatly improves the solver performance. Also note the
FELT superior performance (Figure 12) in terms of stability and rate of convergence for both
Bi-CGSTAB and TFQMR. This outcome is consistent with the eigenvalue distribution of the
preconditioned complex approach, as discussed above.
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Figure 10. Convergence profiles of Bi-CGSTAB and TFQMR preconditioned with ILU(0) or ILUT for problem a2
(decoupled approach).

7. CONCLUSIONS

The following results are worth summarizing:
(1) The equations that arise from the finite element solution to the non-equilibrium

transport problem in porous media may present a partially complex eigenspectrum with the

Figure 11. Convergence profiles of Bi-CGSTAB and TFQMR preconditioned with ILU(0) or ILUT for problem b2
(coupled approach).
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Figure 12. Convergence profiles of Bi-CGSTAB and TFQMR preconditioned with ILU(0) for problem c2 (FELT
with p=p63).

frequency of the complex eigenvalues increasing with increasing the Peclet and the Courant
numbers.

(2) Solution by projection methods Bi-CGSTAB and TFQMR, which have proven quite
robust in the problems addressed by the present study, are investigated by using a precondi-
tioner based on the incomplete triangular factorization (either ILU(0) or ILUT) of the
coefficient matrices.

(3) The eigenspectrum can still possess complex eigenvalues after preconditioning, especially
in advection-dominated problems. However, a good preconditioner should lead to a drastic
reduction of their frequency.

(4) The FELT preconditioned equations have an almost real eigenspectrum. This means
that the incomplete triangular factorization is an excellent preconditioning technique for the
complex solution approach as well.

(5) Bi-CGSTAB and TFQMR are more effectively preconditioned in the FELT formulation
and, subordinately, in the decoupled approach of solution.

(6) The estimate of the spectral condition number formed with the smallest and largest
eigenvalues may not be a good indicator of the eigenspectrum compactness, particularly when
advection dominates and outliers may be easily generated by a numerically unstable incom-
plete factorization. Hence, it should not be used to provide an asymptotic evaluation of the
solver convergence rate.
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